CARBON-13 NMR STUDIES OF PEPTIDE ANTIBIOTICS, THIOSTREPTON AND SIOMYCIN A: THE STRUCTURE RELATIONSHIP

Kazuo Tori,* Katsuya Tokura, Kei Okabe, Mitsuo Ebata and Hideo Otsuka

Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan

and

Gabor Lukacs

Institut de Chimie des Substances Naturelles, C.N.R.S., 91190-Gif-sur-Yvette, France (Received in Japan 13 November 1975; received in WK for publication 8 December 1975)

The structure of thiostrepton (1), a peptide antibiotic isolated from <u>Streptomyces azureus</u>,¹ has been investigated by chemical degradation for a long time.² Many degradation products have hitherto been revealed, <u>e.g.</u>, thiostreptonic acid, thiostreptoic acid, thiostreptine, many other thiazole-4-carboxylic acid derivatives, several quinaldic acid derivatives, and several amino acids: two Ala's, Ile, Thr, Cys, butyrine (But) including two moles of pyruvic acid from dehydroalanines (Deala).² Thereafter, a tentative structure of 1 has been proposed by an X-ray crystallographic analysis⁴ as shown in FIG. 1 (except for the Deala residue in a parenthesis). However, it is not a final one because the presence of one or two additional alanine precursors were suggested in the molecule;³ it has been postulated⁴ that the residue(s), if they occur, should be an extension of the long side chain.

Siomycin A (2),⁵ another peptide antibiotic isolated from <u>Streptomyces sioyaensis</u>,^{5a} having a structure quite similar to that of 1,⁶ has also been studied by degradative methods;⁶ 2 has a Val residue instead of Ile and lacks one Ala residue as compared with 1.⁶ A tentative structure of 2 has been proposed as a result.^{6b}

We wish to report here 13 C NMR spectroscopic studies of these two antibiotics to elucidate their structure relationship.

. The natural-abundance ¹H-noise-decoupled 15-MHz ¹³C FT NMR spectra of $\frac{1}{2}$ and $\frac{2}{2}$ in DMSO-d₆ and CDCl₃-CD₃OD (a 8 : 2 mixture) at ambient temperatures exhibited very broad CH₂- and CH-signals for an

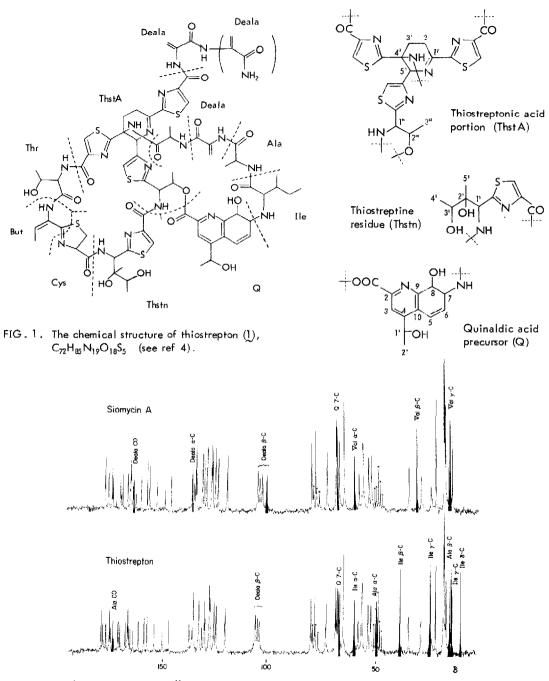


FIG. 2. The ¹H-noise-decoupled ¹³C FT NMR spectra of thiostreptone and siomycin A at 25 MHz in CDCl₃-CD₃OD (8:2) at 70° (taken with a JEOL FX-100 spectrometer, 10-mm tubes; 120 mg cm⁻³; pulse flipping angle, 90°; number of transients, 5,000); x, solvent peaks.

	Thiostrepton (1)	Siomycin A (2)
С-СН₃	11.6(Ile δ); 15.4, 15.9(Ile γ, Ala β); 16.5(Ala β); 23.0(Q 2'); 18.8, 19.0, 19.2×3	15.4(Ala β); 16.5, 17.1(Val γ×2); 23.0(Q 2'); 19.0×2, 19.4×3
$\begin{cases} C(S)-\underline{C}H_2\\ C-\underline{C}H \end{cases}$	25.0(ThstA 2'); 25.3(Ile γ); 29.7(ThstA 3'); 35.2(Cys $\beta)^c$; 39.2(Ile $\beta)$	25.1(ThstA 2'); 29.6(ThstA 3'); 35.2(Cys β) ^c ; 31.8(Val β)
N(O)- <u>C</u> H	49.9(Ala α); 52.4, 53.7(Ala α, Thst A 1"); 56.2, 56.4(Thr α, Thstn 1'); 59.6(Ile α); 64.9(Thst A 5'); 66.2(Q 7) ^b ; 67.1(Thr β); 79.7(Cys α) ^c ; 64.9, 68.4, 68.6, 72.6 (Q 8, 1', Thstn 3', Thst A 2")	52.4, 53.7(Ala α, ThstA 1"); 56.2, 56.4 (Thr α, Thstn 1'); 59.9(Val α); 64.8(ThstA 5'); 67.1(Thr β); 68.0(Q 7); ^b 79.7(Cys α) ^c ; 64.8, 68.4, 68.8, 72.5 (Q8, 1', Thstn 3', ThstA 2")
N(O)-C	58.2(Thst A 4'); 77.7(Thstn 2')	58.0(Thst A 4'); 77.7(Thstn 2')
C=CH2	103.0, 103.9, 104.8(Deala β)	100.5, 102.7, 104.0, 104.9(Dealaβ)
C=CH	118.8(But β); 122.9, 123.6, 125.4, 125.8 127.8, 130.6, 133.0	118.8(But β); 123.0, 124.1, 125.4, 125.8 128.0, 130.6, 132.7
C=C	127.8, 129.2(Q 4, 10)	128.0, 129.1(Q 4, 10)
$\begin{cases} C=C-N\\ N=\overline{C}\\ CO^{-}\\ \overline{N}=\underline{C}-S \end{cases}$	133.0, 133.9, 135.0(Deala α); 144.2(But α); 147.0, 150.6×2, 153.7, 155.3, 157.7, 160.0; 169.5(Ala CO); 161.5, 162.0, 162.4×2, 162.7, 163.5, 166.1, 166.6, 167.3, 169.0, 170.5×2, 170.7, 172.1, 173.7, 174.2	132.7, 133.8, 134.7 x2(Deala α); 144.2(But α); 147.0, 150.6 x2, 153.9, 155.1, 157.7, 160.0; 161.1(Deala CO); 161.5, 162.1, 162.4 x2, 162.7, 163.7, 166.0, 166.6, 167.3, 168.9, 170.5 x2, 170.7, 172.1, 173.7, 173.9

TABLE. ¹³C Chemical Shifts^a and Tentative Assignments

^a ¹³C NMR spectra were mainly determined with a Varian NV-14 FT NMR spectrometer at 15.087 MHz at 90° using a 8:2 mixture of CDCl₃-CD₃OD as a solvent in 8-mm tubes; concentrations were about 400 mg cm⁻³; errors of ⁸C (from internal TMS) are within 0.2; FT measurement conditions were as follows: spectral width, 3170 Hz; pulse flipping angle, <u>ca</u>. 30°; acquisition time, 0.6 sec; number of data points, 3706; number of transients, 300,000-360,000.

^b This assignment is solely due to the proximity of the NCH to Ile or Val.

^C The thiazoline-ring carbon signals were assigned according to a recent study of althiomycin.⁹

accurate count of their carbon numbers to be made. The resonance broadening is probably due to the large globular molecular shape of these substances. However, at elevated temperatures (>70°), they become sharper in CDCl₃-CD₃OD and the carbon numbers were found to be 72 for 1 and 71 for 2. FIGURE 2 shows the 25-MHz ¹³C NMR spectra of 1 and 2.

The ¹³C signal assignments were, though not fully accomplished, carried out tentatively by ¹H noise⁷ and single-frequency off-resonance⁸ decoupling techniques and using known chemical-shift rules,⁸ chemical shifts of the amino acids reported⁸ and those observed for thiostreptine and methyl 4-(α -hydroxyethyl)-8-methoxyquinaldate (see the TABLE). It is clearly demonstrated, as seen from the TABLE, that the spectra

of 1 and 2 are quite similar to each other except for the signals of the IIe and one of the AIa residues and a signal (probably due to 7-NCH in Q) at δ , δ 66.2 in $1_{\mathcal{J}}$ and those of the Val and one of the Deala residues and a signal at δ_{C} 68.0 in 2 (see the filled signals in FIG . 2).

The number of alanine precursors in 1 has frequently been discussed.²⁻⁴ The 13 C spectra suggest that three and four Deala residues are present in 1 and 2, respectively. Our results from amino-acid analyses of 1, 2, and their NaBH₄-reduction³ products were in agreement with the above spectral results. Signals due to $CH_2=C \leq$ of Deala and $-CH=C \leq$ of But almost disappeared from the ¹³C spectra of the reduction products, each of which was a mixture consisting of several components.

As a result, it is concluded that thiostrepton has the structure 1 shown in FIG. 1 (including Deala in the parenthesis) if Hodgkin and coworkers' structure and suggestive comment proposed⁴ are accepted, and that the structure of siomycin A is different from that of thiostrepton only in one portion: Val-Deala residue of the former⁶ corresponds to Ile-Ala residue of the latter.²

Acknowledgements. We thank Prof. M. Bodanszky and the Squibb Institute for an authentic sample of thiostrepton used for a preliminary spectral study, ATCC for a strain of <u>S. az</u>ureus, and JEOL Co. for the 25-MHz ¹³C FT NMR spectra.

REFERENCES

- (1) (a) J. Vandeputte and J. D. Dutcher, Antibiot. Ann. 560 (1955-1956); (b) M. Bodanszky, J. D. Dutcher and N. J. Williams, J. Antibiot. A16, 76 (1963), and references therein.
- (2) (a) M. Bodanszky, J. Fried, J. T. Sheehan, N. J. Williams, J. Alicino, A. I. Cohen, B. T. Keeler and C. A. Birkhimer, <u>J. Amer. Chem. Soc</u>. <u>86</u>, 2478 (1964); (b) M. Bodanszky, J. A. Scozzie and I. Muramatsu, Ibid. <u>21</u>, 4934 (1969); and references therein. (3) M. Bodanszky, J. A. Scozzie and I. Muramatsu, <u>J. Antibiot</u>. <u>23</u>, 9 (1970).
- (4) B. F. Anderson, D. C. Hodgkin and M. A. Viswamitra, Nature 225, 233 (1970).
- (5) (a) H. Nishimura, S. Okamoto, M. Mayama, H. Otsuka, K. Nakajima, K. Tawara, M. Shimohira and N. Shimaoka, J. Antibiot. A14, 255 (1961); (b) M. Ebata, K. Miyazaki and H. Otsuka, Ibid. 22, 364 (1969),
- (6) (a) M. Ebata, K. Miyazaki and H. Otsuka, Ibid. 22, 423 (1969); (b) Idem., Ibid. 22, 434 (1969).
- (7) E. Wenkert, A. O. Clouse, D. W. Cochran and D. Doddrell, J. Amer. Chem. Soc. 91, 6879 (1969).
- (8) G. C. Levy and G. L. Nelson, "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists," Wiley-Interscience, New York (1972); J. B. Stothers, "Carbon-13 NMR Spectroscopy," Academic Press, New York (1972).
- (9) B. W. Bycroft and R. Pinchin, <u>J.C.S. Chem. Comm.</u> 121 (1975).